Visual scanometric detection of DNA through silver enhancement regulated by gold-nanoparticle aggregation with a molecular beacon as the trigger.
نویسندگان
چکیده
A convenient and label-free scanometric approach for DNA assay was designed by integrating a metal-ion-mediated conformational molecular beacon (MB) and silver-signal amplification regulated by gold-nanoparticle (AuNP) aggregation. The strategy was based on displacing the interaction between the target DNA sequence and a competitor Hg(2+) ion with a link DNA sequence. In the absence of the target DNA sequence, a link DNA sequence interacted with the Hg(2+) ions, thus forming an inactive cyclic conformation of the MB. This result led to the poor aggregation of polyadenosine-functionalized AuNPs (A-AuNP). In the presence of a target DNA sequence with a stronger affinity than that of the competitor, hybridization between the link DNA and target DNA sequences turned on the trigger. The polythymidine end of the resulting linear duplex structure could react with A-AuNP, thus leading to a cross-linking aggregation. This aggregation weakened AuNP-catalyzed silver enhancement on a spot substrate. Further, by using scanometric detection, the concentration of the target DNA sequence could be conveniently read out within a linear range from 1.0 to 30 nM. Interestingly, in the same amount of Hg(2+) ions, one-base mismatched DNA showed only 22% of the relative gray-scale intensity for the target DNA sequence at the same concentration, thus indicating good specificity. The designed approach, with the help of the ion-mediated conformational MB, was simple, cost effective, adaptable, and convenient and provided significant potential applications in clinical analysis.
منابع مشابه
In situ scanometric assay of cell surface carbohydrate by glyconanoparticle-aggregation-regulated silver enhancement.
A convenient and label-free scanometric approach for in situ cell surface carbohydrate assay was designed by integrating the bioconjugation and aggregation of glyconanoparticles, silver signal amplification, and spot test. The novel glyconanoparticles were prepared by a one-pot procedure. In the presence of lectin, using concanavalin A and mannose as a couple of model, the glyconanoparticles ex...
متن کاملScanometric DNA array detection with nanoparticle probes.
A method for analyzing combinatorial DNA arrays using oligonucleotide-modified gold nanoparticle probes and a conventional flatbed scanner is described here. Labeling oligonucleotide targets with nanoparticle rather than fluorophore probes substantially alters the melting profiles of the targets from an array substrate. This difference permits the discrimination of an oligonucleotide sequence f...
متن کاملSurface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملElectrochemical assay of anti-tetanus toxoid monoclonal antibody by silver enhancement of gold nanoparticles at carbon nanotubes modified glassy carbon electrode
Tetanus is caused by the toxin secreted by Clostridium tetani. Due to the rapid infection with this bacterium, it is so important to investigate the tetanus immunity of people. Therefore, electrochemical biosensors, as one of the most effective tools in this regard, have demanded characteristics such as being fast, simple, cost-effective and portable. However, their detection sensitivity is not...
متن کاملAn Improved Scanometric Immunoassay Based on Dual Enlargement of Gold Nanoparticles for Rapid and Low Cost Pathogen Detection
In this study, we introduce a dual enlargement of gold nanoparticles (AuNPs) for the scanometric detection of pathogenic bacteria. After capturing the target bacteria (Campylobacter jejuni cells), the gold immunoprobes were added to create signal on a solid substrate. The signal was then amplified dually by a gold growth process and a silver enhancement resulting in stronger intensity which can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry
دوره 17 40 شماره
صفحات -
تاریخ انتشار 2011